Global analysis of gene expression and splicing in human medulloblastomas

Francesca Menghi¹, Thomas S. Jacques²,³, Sian Gibson³, Mike Hubank¹, Jonathan Ham¹

¹Molecular Haematology and Cancer Biology Unit and ²Neural Development Unit, UCL Institute of Child Health, London, WC1N 1EH, UK; ³Department of Histopathology, Great Ormond Street Hospital for Children NHS Trust, London, WC1N 3JH, UK

1) Background
- Medulloblastoma is a malignant tumour of the cerebellum which most commonly affects children.
- A subset of tumours is thought to arise from granule cell progenitors (GCPs) that fail to undergo normal neuronal development, following the hyper-activation of the Sonic Hedgehog (Shh) signalling pathway.

2) Aim
To identify candidate genes that may be involved in the regulation of GCP development and malignant transformation.

3) Methods
- Affymetrix Exon arrays were used to analyse the transcriptional profiles of 14 medulloblastomas and 5 normal cerebellum samples.
- Statistical analysis identified genes differentially expressed or differentially spliced between normal and tumour samples.
- Candidate genes were validated in primary mouse GCP cultures.

4) Samples
- The candidate genes identified in ATOH1-expressing medulloblastomas were evaluated at a higher level in Shh-N-treated GCPs.

5) Gene-level analysis
- A subset of medulloblastomas expressed high levels of the GCP marker ATOH1, suggesting their possible origin from cerebellar GCPs.

6) Exon-level analysis
- ATOH1-expressing medulloblastomas showed patterns of differential splicing.

7) Conclusions
Exon array analysis identified a subset of human medulloblastomas likely to derive from GCPs. These tumours are characterised by:
- Over-expression of GCP markers and activation of the Shh signalling pathway.
- Differential expression of genes that are upregulated when mouse GCPs are treated with Shh-N in vitro.
- Patterns of alternative splicing in common with Shh-N-treated mouse GCPs and associated with cerebellar postnatal development.

The candidate genes identified in this study represent interesting targets to investigate the normal development of the cerebellum and the alterations that lead to its malignant transformation.

Acknowledgements
We are grateful to Dr Martino Barenco and Dr Sonia Shah for their help with the array analysis.
This work was funded by the Olivia Hodson Cancer Fund.